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4. Rationale:  
 
Visual impairment has been associated with an increased risk of cognitive impairment and 
dementia in a number of studies including ARIC1,2. One hypothesized explanation for this is that 
reduced brain stimulation (whether of the occipital cortex due to reduced visual input or of other 
cortical regions due to secondary decreases in cognitively stimulating activities such as reading, 
social engagement, and exercise3) leads to accelerated neurodegeneration, resulting in atrophy 
and functional decline. However, the specific changes in brain structure associated with reduced 
visual function remain incompletely characterized. While studies have reported lower global and 
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regional gray matter volume in isolated disease populations such as age-related macular 
degeneration and glaucoma4–7, these diseases may share underlying risk factors for 
neurodegenerative disease, confounding the relationship between visual function and brain 
volume, and population-based studies of reduced visual acuity (VA) (including that which may 
be reversible with refraction) and brain MRI are lacking. Contrast sensitivity (CS) has also 
emerged as a promising measure of visual function in the aging population, including prominent 
associations with Parkinson and Alzheimer disease, yet studies of CS and brain MRI are limited 
to young, healthy adults8 and a single small study of cerebral amyloid deposition9. Finally, given 
known associations between retinal vascular disease and cerebral white matter disease and 
lacunar stroke10–12, retinal OCT-angiography (OCT-A) has been proposed as a non-invasive 
surrogate marker of intracranial small vessel disease, but existing studies have used limited white 
matter hyperintensity quantification methods and have not explored other measures of white 
matter integrity13,14. In this study, we will examine the relationship of visual pathway structure 
(OCT, OCT-A) and visual function (visual acuity, contrast sensitivity) with MRI-based measures 
of gray and white matter change and brain amyloid PET deposition. 
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5. Main Hypothesis/Study Questions: 
 

1. What neuroimaging profiles are most strongly associated with reduced VA and CS? 
a. We hypothesize that VA and CS will be associated with occipital gray matter 

volume, and that CS will additionally be associated with gray matter volume in 
regions outside the occipital lobe. 

b. We hypothesize that reduced visual function will be associated with greater 
amyloid PET burden, and we will explore whether this is different for CS and 
VA. 

2. What neuroimaging profiles are most strongly associated with reduced retinal ganglion 
cell volume and vascular density? 

a. We hypothesize that retinal  ganglion cell thickness will be associated with 
cerebral gray matter volume, and that retinal vascular density will be associated 
with cerebral white matter changes (specifically, white hyperintensity volume and 
microstructural integrity). 

 
6.  Design and analysis (study design, inclusion/exclusion, outcome and other variables of 
interest with specific reference to the time of their collection, summary of data analysis, 
and any anticipated methodologic limitations or challenges if present). 
 
Study design and sample: We will perform a cross-sectional analysis of vision and MRI/PET 
using data from the EyeDOC study. EyeDOC recruited 1073 participants with Mini-Mental State 
Examination (MMSE) scores no less than 22 (from the Jackson study site) or 24 (from the 
Washington County study site). We will include all EyeDOC subjects with available V5 MRI 
data; for the PET hypotheses, we will examine the subset of EyeDOC participants who also have 
florbetapir PET data from the ARIC-PET study (n=170). 
 
Primary exposure: visual acuity and OCT 

1. The EyeDOC study included standardized measurements of both high-contrast acuity and 
contrast sensitivity. High-contrast VA was measured with subjects’ habitual correction 
using retroilluminated Early Treatment Diabetic Retinopathy Study (ETDRS) chart at a 
distance of four meters. Contrast sensitivity was measured using Mars Contrast 
Sensitivity charts. Each eye was tested separately, and the number of correctly read 
letters was log-transformed and converted to presenting distance acuity logMAR and log 
CS as detailed in the EyeDOC study protocol. For presenting distance acuity, a higher 



logMAR indicates worse vision, and for CS, a higher log value indicates better vision. 
We will use data from the worse seeing eye for analysis. 

2. EyeDOC also included optical coherence tomography (OCT) and OCT-angiography 
imaging of the retina. After pharmacologic dilation, macular OCT images were collected 
and then processed at the image reading center using customized software. Macular 
ganglion cell complex (GCC, which reflects a combination of the ganglion cell and inner 
plexiform layers) thickness will be averaged across the superior, inferior, nasal, and 
temporal quadrants of the inner 3mm Early Treatment of Diabetic Retinopathy Study 
grid. Retinal vascular density is calculated from OCT-A images in three distinct layers of 
the retina from 6mm images: superficial vascular complex, intermediate capillary plexus, 
and deep capillary plexus. For all OCT and OCT-A analyses, the right and left eye will be 
averaged for analysis unless one eye is limited by image quality or availability, in which 
case a single eye will be used. 

 
Primary outcome: brain volume and amyloid PET 
We will explore two neuroimaging markers of neurodegeneration: 

1. MRI - Brain volumes are measured using MRI data from V5 (2011-2013). The ARIC 
MRI Reading Center calculates gray matter (GM) volumes from MP-RAGE sequences, 
white matter hyperintensity (WMH) volumes from FLAIR images, and measures of white 
matter integrity [fractional inosotropy (FA) and mean diffusivity (MD)] from diffusion 
tensor images. GM volume will be calculated for the entire brain as well as for regions of 
interest (e.g. occipital, temporal lobes) and voxel-based analyses (see below). WMH 
volume is summed across the entire brain, and global FA and MD are calculated as 
weighted averages based on the number of voxels in each region according to standard 
ARIC protocols. 

2. Amyloid PET – Florbetapir PET scans were performed as part of the ARIC-PET 
substudy within one year of V5 MRI. Standardized uptake value ratios (SUVR) were 
calculated at each of 34 regions of interest and spatially normalized and averaged to 
create a global cortical measure of β-amyloid (Aβ) as previously described15. 

 
Secondary covariates for adjustment: Other covariates will be selected primarily based on their 
potential association with the primary outcome and informed by previous neuroimaging studies 
in ARIC: 

1. Age 
2. Race/study center (Black/Jackson and White/Washington County) 
3. Gender 
4. Education (3 classes) 
5. Smoking history 
6. Alcohol history 
7. Hypertension 
8. Diabetes 
9. Total serum cholesterol 
10. History of stroke 
11. APOE ε4 allele status 
12. Total intracranial volume (for MRI analyses) 

 



Statistical Analysis: 
 

1. VA/CS and brain MRI – We  will work with the ARIC MRI Reading Center to conduct 
voxel-based morphometry (VBM) analyses of GM as a function of logMAR-VA and 
logCS. For these analyses, visual function will be dichotomized as follows: 

a. logMAR-VA will be dichotomized at >0.3 vs. <0.3. A logMAR of 0.3 
corresponds to a Snellen equivalent of 20/40, which is associated with meaningful 
differences in vision-related activity (e.g. restricted driving privileges in most 
U.S. states) and quality of life and has been used in previous vision/MRI studies 
(https://www.medrxiv.org/content/10.1101/2021.01.09.21249189v1.full). About 
25% of the EyeDOC cohort has a presenting distance logMAR-VA of 0.3 or 
worse, ensuring reasonable statistical power for this analysis. 

b. logCS will be dichotomized at the median. 
For VBM analyses, GM images are spatially normalized and smoothed, and then used in 
the SPM12 general linear model framework to estimate models of associations between 
logMAR-VA and logCS groups and GM volume on a voxel-wise basis as previously 
performed in ARIC16. The results of these VBM analyses will be used to identify 
signature regions of interest associated with reduced VA and CS, respectively, which will 
then be formally compared in separate linear regression models adjusting for covariates. 
We will construct additional models for other prespecified regions of interest (e.g. 
occipital, temporal) and global GM volume as well. 

2. VA/CS and amyloid PET – We will use logistic regression to assess the association 
between global cortical β-amyloid burden and logMAR-VA or logCS adjusting for the 
above covariates. For these analyses, amyloid SUVR will be dichotomized at the median 
due to its highly skewed distribution, and logMAR-VA and logCS will be analyzed as 
continuous exposure variables. 

3. Macular GCC thickness and brain MRI – Similar to our approach with VA and CS, we 
will conduct VBM analyses of GM volume according to macular GCC thickness to 
derive a signature region of interest associated with ganglion cell thinning. For this 
analysis, GCC thickness will be divided into quartiles, and we will compare the bottom 
(thinnest) quartile to the top three quartiles. Associations between global and regional 
GM volume and macular GCC thickness will then be assessed using linear regression 
adjusting for confounders. 

4. Macular retinal vessel density and brain MRI – We will use linear regression to 
determine the association between WMH volume, FA, and MD as a function of retinal 
vascular density adjusting for covariates. We will construct separate models for each 
white matter outcome variable and retinal vascular layer. Retinal vascular density will be 
analyzed as a continuous variable in these analyses. 
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